Algorithmic detectability threshold of the stochastic blockmodel

نویسنده

  • Tatsuro Kawamoto
چکیده

The assumption that the values of model parameters are known or correctly learned, i.e., the Nishimori condition, is one of the requirements for the detectability analysis of the stochastic blockmodel in statistical inference. In practice, however, there is no example demonstrating that we can know the model parameters beforehand, and there is no guarantee that the model parameters can be learned accurately. In this study, we consider the expectation–maximization (EM) algorithm with belief propagation (BP) and derive its algorithmic detectability threshold. Our analysis is not restricted to the community structure, but includes general modular structures. Because the algorithm cannot always learn the planted model parameters correctly, the algorithmic detectability threshold is qualitatively different from the one with the Nishimori condition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect clustering for stochastic blockmodel graphs via adjacency spectral embedding

Vertex clustering in a stochastic blockmodel graph has wide applicability and has been the subject of extensive research. In this paper, we provide a short proof that the adjacency spectral embedding can be used to obtain perfect clustering for the stochastic blockmodel and the degreecorrected stochastic blockmodel. We also show an analogous result for the more general random dot product graph ...

متن کامل

Detectability thresholds and optimal algorithms for community structure in dynamic networks

We study the fundamental limits on learning latent community structure in dynamic networks. Specifically, we study dynamic stochastic block models where nodes change their community membership over time, but where edges are generated independently at each time step. In this setting (which is a special case of several existing models), we are able to derive the detectability threshold exactly, a...

متن کامل

On the Scalable Learning of Stochastic Blockmodel

Stochastic blockmodel (SBM) enables us to decompose and analyze an exploratory network without a priori knowledge about its intrinsic structure. However, the task of effectively and efficiently learning a SBM from a large-scale network is still challenging due to the high computational cost of its model selection and parameter estimation. To address this issue, we present a novel SBM learning a...

متن کامل

Universal Phase Transition in Community Detectability under a Stochastic Block Model

We prove the existence of an asymptotic phase-transition threshold on community detectability for the spectral modularity method [M. E. J. Newman, Phys. Rev. E 74, 036104 (2006) and Proc. Natl. Acad. Sci. (USA) 103, 8577 (2006)] under a stochastic block model. The phase transition on community detectability occurs as the intercommunity edge connection probability p grows. This phase transition ...

متن کامل

A Frequency-based Stochastic Blockmodel

We propose a frequency-based infinite relational model (FIRM), which takes into account the frequency of relation whereas stochastic blockmodels ignore frequency. We also derive a variational inference method for the FIRM to apply to a large dataset. Experimental results show that the FIRM gives better clustering results than a stochastic blockmodel on a dataset which has the frequency of relat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.08841  شماره 

صفحات  -

تاریخ انتشار 2017